The Bohnenblust–Spitzer Algorithm and its Applications
نویسندگان
چکیده
The familiar bijections between the representations of permutations as words and as products of cycles have a natural class of “data driven” extensions that permit us to use purely combinatorial means to obtain precise probabilistic information about the geometry of random walks. In particular, we show that the algorithmic bijection of Bohnenblust and Spitzer can be used to obtain means, variances, and concentration inequalities for several random variables associated with a random walk including the number of vertices and length of the convex minorant, concave majorant, and convex hull.
منابع مشابه
A one-parameter family of dendriform identities
The classical Spitzer and Bohnenblust–Spitzer identities [17, 1, 15] from probability theory can be formulated in terms of certain algebraic structures known as commutative Rota-Baxter algebras. Recently, Ebrahimi-Fard et al. [3] have extended these identities to noncommutative Rota-Baxter algebras. Their results can in fact be formulated in terms of dendriform dialgebras [4], a class of associ...
متن کاملSIMULATED ANNEALING ALGORITHM FOR SELECTING SUBOPTIMAL CYCLE BASIS OF A GRAPH
The cycle basis of a graph arises in a wide range of engineering problems and has a variety of applications. Minimal and optimal cycle bases reduce the time and memory required for most of such applications. One of the important applications of cycle basis in civil engineering is its use in the force method to frame analysis to generate sparse flexibility matrices, which is needed for optimal a...
متن کاملNew Identities in Dendriform Algebras
Dendriform structures arise naturally in algebraic combinatorics (where they allow, for example, the splitting of the shuffle product into two pieces) and through Rota–Baxter algebra structures (the latter appear, among others, in differential systems and in the renormalization process of pQFT). We prove new combinatorial identities in dendriform dialgebras that appear to be strongly related to...
متن کاملA Noncommutative Bohnenblust–spitzer Identity for Rota–baxter Algebras Solves Bogoliubov’s Recursion
The Bogoliubov recursion is a particular procedure appearing in the process of renormalization in perturbative quantum field theory. It provides convergent expressions for otherwise divergent integrals. We develop here a theory of functional identities for noncommutative Rota–Baxter algebras which is shown to encode, among others, this process in the context of Connes–Kreimer’s Hopf algebra of ...
متن کاملLower Order Terms in Szegö Theorems on Zoll Manifolds
We give an outline of the computation of the third order term in a generalization of the Strong Szegö Limit Theorem for a zeroth order pseudodifferential operator (PsDO) on a Zoll manifold of an arbitrary dimension, see [Gi2] for the detailed proof. This is a refinement of a result by V. Guillemin and K. Okikiolu who have computed the second order term in [GO2]. An important role in our proof i...
متن کامل